Excerpt: The technology moves prosthetics beyond bright light and high-contrast recognition and may be adopted for human use within a year or two, said Sheila Nirenberg, a neuroscientist at Weill Cornell Medical College in New York and the study’s lead author.
“What this shows is that we have the essential ingredients to make a very effective prosthetic,” Nirenberg said. Researchers haven’t yet tested the approach on humans, though have assembled the code for monkeys, she said.
Once the researchers determined the code the mouse retina used to communicate with the brain, they were able to mimic it with electric-signal sending glasses, Nirenberg said. Previous prosthetics have used less-specific stimulation and proved inherently limited as a result, she said.
About 20 million people worldwide are blind or facing blindness due to retinal degenerative diseases, such as macular degeneration and retinitis pigmentosa. The disorders cause a progressive loss of the retina’s input cells, or photoreceptors.
Read full report here.
No comments:
Post a Comment